Homelab 2015 Upgrade

Since my last major entry about my Homelab in 2014, I have changed a few things. I added a 2nd cluster based on Apple MacMini (Late 2012), on which I run my OS X workloads, VMware Photon #CloudNativeApps machines, the DevOps Management tools and the vRealize Automation deployed blueprints. This cluster was initially purchased & conceived as a management cluster. The majority of my workload is composed of management, monitoring, analysis and infrastructure loads. It just made sense to swap the Compute and Management cluster around, and use the smaller one for Compute.


Compute Cluster

The original cluster composed of three SuperMicro X9SRH-7TF described in my Homelab 2014 article (more build pictures here) gave me some small issues.


Homelab in December 2014.

I’ve found that the Dual 10GbE X540 chipset on the motherboard does heat up a bit more than expected, and more than once (5x) I lost the integrated Dual 10GbE adapters on one of my hosts, requiring a host power off for ~20 minutes to cool down. In addition, a single 16G DDR3 DIMM was causing one host to freeze once every ~12 days. All the host have run extensive 48 hours memtest86+ checks, but nothing was spotted.  When a frozen VSAN host rejoins the cluster you see the re-synchronization of the data, and at that time, I’m glad to have a 10GbE network switch. In the end, I followed a best practice for VSAN clusters, I extendd the cluster to 4 hosts.

Beginning February I added a single Supermicro X10SRH-CLN4F server with a Intel Xeon E5-2630v3 (8 Cores @2.4Ghz and 64GB of DDR4 memory) to the cluster. This Supermicro X10SRH-CLN4F comes with 4 Intel Gigabit ports, an integrated LSI 3008 SAS 12Gb/s adapter. I also added an Intel X540-T2 dual 10GbE adapter to bring it in line with the first three nodes.


vSphere 6.0 on Supermicro X10SRH-CLN4F

Having a fourth host means scaling up the VSAN Cluster with an additional SSD and two 4TB SAS drives.

In the past month, the pricing of the Samsung 845DC Pro SSD have drop, to come in the $1/GB range. The Samsung 845DC Pro is rated at 10 DWPD (Disk-Writes-Per-Day) or 7300 TBW (TeraBytes-Written-in-5-years), and its performance is documented at 50’000 Sustained Write IOPS (4K) (Write IOPS Consistency at 95%) [Reference Samsung 845DC Pro PDF, and thessdreview article]. A fair warning for other poeple looking at the Samsung SSD 845DC Pro, it is not on the VMware VSAN Hardware Compatibility List.

Here is a screenshot of the disk group layout of the VSAN Cluster.


VSAN Disk Management

The resulting VSAN configuration is now 28TB usable space.


Here is a screenshot of the current Management Cluster.

Management Cluster

This cluster having grown, is now also generating additional heat. It’s been relocated in a colder room, and I had a Three Phase 240V 16A electricity line put in.

Management Cluster (April 2015)

Management Cluster (April 2015)

My external storage is still composed of two Synology arrays. An old DS1010+ and a more recent DS1813+ with a DX513 extension. At this point, 70% of my virtual machine datasets are located on the VSAN datastore.

Synology DS1813+ Storage Manager

Reviewing this article, I realize this cannot quantify as a homelab anymore… its a home datacenter… guess I need a new #HomeDC hashtag…

Notes & Photos of the Homelab 2014 build

I’ve had a few questions about my Homelab 2014 upgrade hardware and settings. So here is a follow-up. This is just a photo collection of the various stages of the build.  Compared to my previous homelabs that where designed for a small footprint, this one isn’t, this homelab version has been build to be a quiet environment.

I started my build with only two hosts. For the cases I used the very nice Fractal Design Define R4. These are ATX chassis in a sleek black color, can house 8x 3.5″ disks, and support a lot of extra fans. Some of those you can see on the right site, those are Noctua NF-A14 FLX. For the power supply I picked up some Enermax Revolution Xt PSU.


For the CPU I went with the Intel Xeon E5-1650v2 (6 Cores @3.5GHZ) and a large Noctua NH-U12DX i4. The special thing about the NH-U12DX i4 model is that it comes with socket brackets for the Narrow-Brack ILM that you find on the Supermicro X9SRH-7TF motherboard.


The two Supermicro X9SRH-7TF motherboards and two add-on Intel I350-T2 dual 1Gbps network cards.


Getting everything read for the build stage.

On the next photo you will see quiet a large assortment of pieces. There are 5 small yet long lasting Intel SSD S3700 100GB, 8x Seagate Constellation 3TB disks, some LSI HBA Adapters like the LSI 9207-8i and LSI 9300-8i, two Mellanox ConnectX-3 VPI Dual 40/56Gbps InfiniBand and Ethernet adapters that I got for a steal (~$320USD) on ebay last summer.


You need to remember, that if you only have two hosts, with 10Gbps Ethernet or 40Gbps Ethernet, you can build a point-to-point config, without having to purchase a network switch. These ConnectX-3 VPI adapters are recognized as 40Gbps Ethernet NIC by vSphere 5.5.

Lets have a closer look at the Fractal Design Define R4 chassis.

Fractal Design Define R4 Front

Fractal Design Define R4 Front

The Fractal Design Define R4 has two 14cm Fans, one in the front, and one in the back. I’m replacing the back one with the Noctua NF-A14 FLX, and I put one in the top of the chassis to extra the little warm air out the top.

The inside of the chassis has a nice feel, easy access to the various elements, space for 8x 3.5″ disk in the front, and you can push power-cables on the other side of the chassis.

Fractal Design Define R4 Inside

Fractal Design Define R4 Inside

A few years ago, I bought a very nice yet expensive Tyan dual processor motherboard and I installed it with all the elements before looking to put the CPU on the motherboard. It had bent pins under the CPU cover. This is something that motherboard manufacturers and distributors have no warranty. That was an expensive lesson, and that was the end of my Tyan allegiance. Since then I moved to Supermicro.

LGA2011 socket close-up. Always check the PINs. for damage

LGA2011 socket close-up. Always check the PINs. for damage

Here is the close up of the Supermicro X9SRH-7TF

Supermicro X9SRH-7TF

Supermicro X9SRH-7TF

I now always put the CPU on the motherboard, before the motherboard goes in the chassis. Note on the next picture the Narrow ILM socket for the cooling.

Intel Xeon E5-1650v2 and Narrow ILM

Intel Xeon E5-1650v2 and Narrow ILM

Here is the difference between the Fractal Design Silent Series R2 fan and the Noctua NF-A14 FLX.

Fractal Design Silent Series R2 & Noctua NF-A14 FLX

Fractal Design Silent Series R2 & Noctua NF-A14 FLX

What I like in the Noctua NF-A14 FLX are the rubber hold-fasts that replace the screws holding the fan. That is one more option where items in a chassis don’t vibrate and make noise. Also the Noctua NF-A14 FLX runs by default at 1200RPM, but you have two electric Low-Noise Adapters (LNA) that can bring the default speed down to 1000RPM and 800RPM. Less rotations equals less noise.

Noctua NF-A14 FLX Details

Noctua NF-A14 FLX Details

Putting the motherboard in the Chassis.


Now we need to modify the holding brackets for the CPU Cooler. The Noctua NH-U12DX i4 comes with Narrow ILM that can replace the ones on it. In the picture below, the top one is the Narrow ILM holder, while the bottom one still needs to be replaced.


And a close up of everything installed in the Chassis.


To hold the SSD in the chassis, I’m using an Icy Dock MB996SP-6SB to hold multiple SSD in a single 5.25″ frontal slot. As SSD don’t heat up like 2.5″ HDD, you can select to cut the electricity to the FAN.


This Icy Dock MB996SP-6SB gives a nice front look to the chassis.


How does it look inside… okay, honest I have tied up the sata cables since my building process.



Here is the picture of my 2nd vSphere host during building. See the cabling is done better here.



The two Mellanox ConnectX-3 VPI 40/56Gbps cards I have where half-height adapters. So I just to adapt a little bit the holders so that the 40Gbps NIC where firmly secured in the chassis.


Here is the Homelab 2014 after the first build.



At the end of August 2014, I got a new Core network switch to expand the Homelab. The Cisco SG500XG-8F8T, which is a 16x Port 10Gb Ethernet. Eight ports are in RJ45 format, and eight are in SFP+ format, and one for Management.

Cisco SG500XG-8G8T

Cisco SG500XG-8G8T

I build a third vSphere host using the same config as the first ones. And here is the current 2014 Homelab.

Homelab 2014

Homelab 2014

And if you want to see what the noise is at home, check this Youtube movie out. I used the dBUltraPro app on the iPad to measure the noise level.

And this page would not be complete if it didn’t have a vCenter cluster screenshot.

Homelab 2014 Cluster

Upgrading the X9SRH-7TF LSI HBA 2308 and LSI HBA 9207-8i

Here is a resume on how to upgrade the LSI HBA 2308 Chipset on the Supermicro X9SRH-7TF and a LSI SAS2 HBA 9207-8i card to the latest BIOS & Firmware using the UEFI mode. This is applicable to my homelab Supermicro X9SRH-7TF or any other motherboard with UEFI Build-In EFI Shell.

I’ve found that using the UEFI mode to be more practical than the old method of a MSDOS bootable USB key. And this is the way more and more Firmware and BIOS will be released.

Tom and Duncan showed you last week how to upgrade an LSI 9207-4i4e from within VMware vSphere 5.5 CLI. In this article I’m going to show you how to use the UEFI Shell for the upgrade.


Since last week, I have been running the PernixData FVP (Flash Virtualization Platform) 1.5 solution on my two ESXi hosts, and I have found that the LSI HBA 2308 on the motherboard had a tendency to drop all the Drives and SSDs under heavy I/O load. I did upgrade last week the LSI HBA 2308 from the original Phase 14 Firmware to Phase 16, but that didn’t solve the issue.  Unfortunately I have not yet found on the Supermicro Support site, a newer release of the Firmware Phase 18 or BIOS for the embedded adapter.

So I dropped in the box another LSI HBA 9207-8i adapter, which is also based on the LSI 2308 chip. And low and behold, my two LSI adapter seemed to have nearly the exact same Firmware & BIOS.


Well if they LSI Embedded HBA and the LSI 9207-8i are nearly identical and with the same chipset… who knows if I burn the Firmware & BIOS on the motherboard…



First you need to head over to the LSI website for the LSI 9207-8I and download a few files to a local computer. For the LSI HBA 9207-8i you can jump to the Software Downloads section. You want to download three files, extract them and put the files on a USB key.

  • The Installer_P18_for_UEFI which contains the firmware updater (sas2flash.efi)
  • The UEFI_BSD_P18 which contains the BIOS for the updater (X64SAS2.ROM)
  • The 9207_8i_Package_P18_IR_IT_Firmware_BIOS_for_MSDOS_Windows which contains the 9207-8.bin firmware.


At this point you put all those extracted files mentioned above on a USB key.

You reboot your server, and modify the Boot parameters in the BIOS of the server to boot in UEFI Built-In EFI Shell.


When you reboot also jump into the LSI HBA Adapter to collect the controllers SAS address. Its a 9 digit number you can find on the following interface. Notice that it starts with a 0 on the left of the quote.




For my adapters it would be 005A68BB0 for the SAS9207-8I and 0133DBE00 for the embedded SMC2308-IT.


Upgrading BIOS & Firmware.

Lets plug in the USB key in the server, and lets boot into the UEFI Build-In EFI Shell.


And lets move over to the USB key. For me the USB key is mapped as fs1: but you could also have a fs0:.  A quick dir command will list the files on the USB key.


Using the sas2flash.efi -listall command (extracted from the Installer_P18_for_UEFI file) we can list all the local LSI HBA adapters and see the various versions of the Firmware & BIOS.


We can also get more details about a specific card using the sas2flash.efi -c 0 -list


and sas2flash.efi -c 1 -list


Now lets just upgrade the BIOS with the X64SAS2.ROM file found in the UEFI_BSD_P18 download and the Firmware with the 9207-8.bin that we found in the 9207-8i_Package_P18_IR_IT_Firmware_BIOS_for_MSDOS_Windows file.

As you see, the -c Controller command allows you to specify to which adapter the BIOS and Firmware is upgraded.




Lets have a peak again at just one of the LSI Adapters, the controller 1, which is the embedded one, now seems to have the Board name SAS9207-8i. A bit confusing, but it seemed to have worked.


Using the sas2flash.efi -listall command now shows us the new Firmware and BIOS applied to both cards.


Now power-off the server, so the new BIOS & Firmware are properly loaded, and make sure to change back your Boot option in the server BIOS to your USB key or harddrive that contains the vSphere hypervisor.

Both LSI 9207-8i and the Embedded LSI HBA 2308 now show up as LSI2308_1 and LSI2308_2 in the vSphere Client.



Homelab 2014 upgrade

I’ve been looking for a while for a new more powerful homelab (for home), that scales and passes the limits I currently have. I had a great success last year with the Supermicro X9SRL-F motherboard for the Home NAS (Running NexentaStor 3.1.5), so I know I loved the Supermicro X9 Single LGA2011 series. Because of the Intel C600 series of chipset, you can break the barrier of the 32GB you find on most motherboards (Otherwise the X79 chipset allows you upto 64GB).

As time passes, and you see product solutions coming out (vCOPS, Horizon View, vCAC, DeepSecurity, ProtectV, Veeam VBR, Zerto) with memory requirements just exploding. You need more and more memory. I’m done with the homelab, where you really need to upgrade just because you can’t upgrade the top limit of the memory. So bye bye the current cluster of four Shuttle XH61v with 16GB.

With the Supermicro X9SRH-7TF (link) you can go to 128GB easy (8x16GB) for now. It’s really just a $$$ choice. 256GB (8x32GB) is still out of reach for now, but that might change in 2 years.

I have attempted to install PernixData FVP 1.5 on my Homelab 2013 Shuttle XH61v, but the combo of the motherboard/AHCI/Realtek R8168 makes for an unstable ESXi 5.5. Sometimes the PernixData FVP Management Server sees the SSD on my host, then it looses it. I did work with PernixData engineers (and Satyam Vaghani), but my homelab is just not stable. Having been invited to the PernixPro program, doesn’t give me the right to use hours and hours of PernixData engineers time to solve my homelab issues. This has made the choice for my two X9SRH-7TF boxes much easier.

The Motherboard choice of the Supermicro X9SRH-7TF (link) is great because of the integrated management, the F in the X9SRH-7TF. Its a must these day. Having the Dual X540 Intel 10GbE Network Card on the motherboard will allow me to start using the network with a dual gigabit link,  and when I have the budget for a Netgear XS708E or XS712T it will scale to dual 10Gbase-T. In the meantime I can also have a single point-to-point 10GbE link between the two X9SRH-7TF boxes for vMotion and the PernixData data synchronization. The third component that comes on the X9SRH-7TF is the integrated LSI Storage SAS HBA, the LSI 2308 SAS2 HBA. This will allow me to build a great VSAN cluster, once I go from two to three serverss at a later date. Its very important to ensure you have a good storage adapter for VSAN. I have been using the LSI adapters for a few years and I trust them. Purchasing a motherboard, then adding the Dual X540 10GbE NIC and a LSI HBA would have cost a lot more than the X9SRH-7TF.

For the CPU, Frank Denneman (@FrankDenneman) and me came to the same conclusion, the Intel Xeon E5-1650 v2 is the perfect choice between number of cores, cache and speed. Here is an another description of the Intel Xeon E5-1650 v2 launch (CPUworld).

For the Case, I have gone just like Frank Denneman’s vSphere 5.5 home lab choice with the Fractal Design Define R4 (Black). I used a Fractal Design Arc Midi R2 for my Home NAS last summer, and I really liked the case’s flexibility, the interior design, the two SSD slots below the motherboard. I removed the default two Fractal Design Silent R2 12cm cooling fans in the case and replaced with two Noctua NH-A14 FLX fans that are even quieter, and are connected using rubber holders so they vibrate even less. It’s all about having a quiet system. The Home NAS is in the guest room, and people sleep next to it without noticing it. Also the Define R4 case is just short of 47cm in height, meaning you can lie it down in a 19″ rack if there is such a need/opportunity.

For the CPU Cooler, I ordered two Noctua NH-U12DX i4 coolers which support the Narrow ILM socket. Its a bit bigger than the NH-U9DX i4 that Frank ordered, so we will be able to compare. I burned myself last year with the Narrow ILM socket. I puchased a water cooling solution for the Home NAS and it just couldn’t fit it on the Narrow ILM socket. That was before I found out the difference between a normal square LGA2011 socket and the Narrow ILM sockets used on some of the Supermicro boards. Here is a great article that explains the differences Narrow ILM vs Square ILM LGA 2011 Heatsink Differences (ServeTheHome.com)

For the Power supply, I invested last year in an Enermax Platimax 750W for the Home NAS. This time the selection is the Enermax Revolution X’t 530W power supply. This is a very efficient 80 Gold Plus PSU. which supports ATX 12V v2.4 (can drop to 0.5W on standby) and uses the same modular connectors of my other power supplies. These smaller 500W power supplies are very efficient when they run at 20% to 50% charge. This should also be a very quiet PSU.

I made some quick calculations yesterday for the Power Consumption, I expect the max power that can be consumed by this new X9SRH-7TF build should be around 180-200W, but it should be running around the 100-120W on a normal basis. At normal usage, I should hit the 20% of the power supply load, so my Efficiency of the PSU should be at around 87%, a bit lower than Frank’s choice of the Corsair RM550. This is the reason why I attempt to take a smaller PSU rather than some of the large 800W or even 1000W PSU. 


For the Memory, I’m going to reuse what I purchased last year for my Home NAS. So each box will receive 4x16GB Kingston 1600Mhz ECC for now.

My current SSDs that I will use in this rig are the Intel SSD S3700 100GB enterprise SSD and some Samsung 840 Pro 512GB. What is crucial for me in the the Intel S3700 is that its Endurance design is 10 drive writes per day for 5 years. For the 100GB, it means that its designed to write 1TB each day. This is very important for solutions like PernixData or VSAN.  Just to compare, the latest Intel Enthusiast SSD, the SSD 730 240GB that I purchased for my wife’s computer, its endurance design is set to 50GB per day for 5 years (70GB for the 480GB model). The Intel SSD 730 just like it’s Enterprise cousins (S3500 and S3700) come with a Enhanced power-loss data protection using power capacitors. The second crucial design in an Enterprise SSD, is its Sustained IOPs rating.

I’m also adding a Intel Ethernet Server Adapter I350-T2 Network Card for the vSphere Console management. I’m used to have a dedicated Console Management vNIC on my ESXi hosts. These will be configured in the old but trusty vSwitch Standard.

Another piece of equipment that I already own and that I will plug on the new X9SRH-7TF are the Mellanox ConnectX-3 Dual FDR 56Gb/s  InfiniBand Adapters I purchased last year. This will allow me to test and play with a point-to-point 56Gb/s link between the two ESXi hosts. Some interesting possibilities here…  I currently don’t have a QDR or FDR InfiniBand switch, and these switches are also very noisy, so that is something I will look at in Q3 this year.

I live in Switzerland, so my pricing will be a bit more expensive than what you find in other European countries. I’m purchasing my equipment with a large distribor in switzerland, Brack.ch . Even if the Supermicro X9SRH-7TF is not on their pricing list, they are able to order them for me. The price I got for the X9SRH-7TF is at 670 Swiss Francs, and the Intel E5-1650v2 at 630 Swiss Francs. As you see the Cost of one of these server is closing in the 1800-1900 Euro price range. I realize it’s Not Cheap. And it’s the reason of my previous article on the increase costs for a dedicated homelab, the Homelab shift…

Last but not least, in my Homelab 2013 I focus a lot on the Wife Acceptance Factor (WAF). I aimed for Small, Quiet, Efficence. This time, the only part that I will not be able to keep, is the Small. This design is still a Quiet and Efficient configuration. Lets hope I won’t get into too much problems with the wife.

I also need to thank Frank Denneman (@FrankDenneman) as we discussed extensively this home lab topic over the past 10 days, fine tuning the design on some of the choice going into this design. My prior design for the homelab 2014 might have gone with the Supermicro A1SAM-2750F without his input. A nifty little motherboard with Quad Gigabit, 64GB memory support, but lacking on the CPU performance. Thanks Frank.